Pathwidth of outerplanar graphs
نویسندگان
چکیده
We are interested in the relation between the pathwidth of a biconnected outerplanar graph and the pathwidth of its (geometric) dual. Bodlaender and Fomin [2], after having proved that the pathwidth of every biconnected outerplanar graph is always at most twice the pathwidth of its (geometric) dual plus two, conjectured that there exists a constant c such that the pathwidth of every biconnected outerplanar graph is at most c plus the pathwidth of its dual. They also conjectured that this was actually true with c being 1 for every biconnected planar graph. Fomin [7] proved that the second conjecture is true for all planar triangulations, and made a stronger conjecture about the linear width of planar graphs. First, we construct for each p ≥ 1 a biconnected outerplanar graph of pathwidth 2p+1 whose (geometric) dual has pathwidth p + 1, thereby disproving all three conjectures. Then we prove, in an algorithmic way, that the pathwidth of every biconnected outerplanar graph is at most twice the pathwidth of its (geometric) dual minus 1. A tight interval for the studied relation is therefore obtained, and we show that all the gaps within the interval actually happen. Key-words: pathwidth, vertex separation, outerplanar graph, biconnected, linear width This work was partially funded by the European projects IST FET AEOLUS and COST 293 GRAAL, and done within the CRC CORSO with France Telecom R&D. ∗ Email: [email protected] Sommet-séparation des graphes planaires extérieurs Résumé : Nous étudions la relation entre la sommet-séparation d’un graphe planaire extérieur 2-connexe G et celle de son dual. Bodlaender et Fomin [2], après avoir prouvé que la sommet-séparation d’un tel graphe G est au plus deux fois celle de son dual plus deux, ont conjecturé que la sommet-séparation d’un tel graphe G est à une constante c de celle de son dual. Ils ont également conjecturé que ceci est vrai avec c = 1 pour tout graphe planaire 2-connexe. Fomin [7] a montré que cette seconde conjecture est vraie si G est une triangulation du plan, et a fait une conjecture plus forte à propos de la largeur linéaire des graphes planaires. En premier lieu, nous construisons pour tout p ≥ 1 un graphe planaire extérieur 2-connexe de sommet-séparation 2p+1 tel que la sommet séparation de son dual soit p+1, ce qui établit que les trois conjectures précédentes sont fausses. Ensuite nous prouvons, de façon algorithmique, que la sommet-séparation d’un graphe planaire extérieur 2-connexe est au plus 2 fois celle de son dual moins 1. Un intervalle serré pour la relation étudiée est ainsi obtenu, et nous montrons que tous les écarts de l’intervalle sont atteints. Mots-clés : sommet-séparation, graphe planaire extérieur, largeur linéaire, biconnexe Pathwidth of outerplanar graphs 3
منابع مشابه
2-connecting Outerplanar Graphs without Blowing Up the Pathwidth
Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add edges to G to get a supergraph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p). This settles an open problem raised by Biedl [1], in the context of computing minimum height planar straight line drawings of outerplanar graphs, with their vertices placed on a two dimensional grid. In conjunction...
متن کاملApproximation of Pathwidth of Outerplanar Graphs
There exists a polynomial time algorithm to compute the pathwidth of outerplanar graphs [3], but the large exponent makes this algorithm impractical. In this paper, we give an algorithm, that given a biconnected outerplanar graph G, finds a path decomposition of G of pathwidth at most at most twice the pathwidth of G plus one. To obtain the result, several relations between the pathwidth of a b...
متن کاملApproximation the Pathwidth of Outerplanar Graphs
Pathwidth is a well-known NP-Complete graph metric. Only very simple classes of graphs, such as trees, are known to permit practical pathwidth algorithms. We present a technique to approximate the pathwidth of outerplanar graphs. Our algorithm works in linear time, is genuinely practical and produces solutions at most three times the optimum.
متن کاملOuterplanar obstructions for matroid pathwidth
For each non-negative integer k, we provide all outerplanar obstructions for the class of graphs whose cycle matroid has pathwidth at most k. Our proof combines a decomposition lemma for proving lower bounds on matroid pathwidth and a relation between matroid pathwidth and linearwidth. Our results imply the existence of a linear algorithm that, given an outerplanar graph, outputs its matroid pa...
متن کاملSeymour's conjecture on 2-connected graphs of large pathwidth
We prove the conjecture of Seymour (1993) that for every apex-forest H1 and outerplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas (arXiv:1712.04549).
متن کاملLinear-Time Algorithms for Problems on Planar Graphs of Fixed Disk Dimension
The disk dimension of a planar graph G is the least number k for which G embeds in the plane minus k open disks, with every vertex on the boundary of some disk. Useful properties of graphs with a given disk dimension are derived, leading to an efficient algorithm to obtain an outerplanar subgraph of a graph of disk dimension k by removing at most 2k−2 vertices. This reduction is used to obtain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 55 شماره
صفحات -
تاریخ انتشار 2007